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GRACE Mission

Sc/ence Goals

High resolution, mean & time
variable gravity field mapping
for Earth System Science
applications.

Mission Systems
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24 & 32 GHz *KBR (JPL/SSL)
Crosslink ACC (ONERA)
*SCA (DTU)
*GPS (JPL)
Satellite (JPL/DSS)
Launcher (DLR/Eurockot)
Operations (DLR/GSOC)
Science (CSR/JPL/GFZ)

NASA Stations Orbit
LEOP & Contingency Launch: March 2002

(Also-McMurdo) ;ﬁl\s e Altitude: 485 km
Poker Flat™ ; i o e Inclination : 89 deg

\,\ Eccentricity: ~0.001
Raw Data Centre E =
(DLR-DFD) Lifetime: 5 years

¥ Neustrelitz @, Non-Repeat Ground Track

Science Data System Mission Control < & N\ Earth Pointed, 3-Axis Stable
(CSR/JPL/GFZ) * (DLR-GSOC)  Weilheim (% (ory N/




GRACE Measurement Concept

e FEarth gravity features affect lead/trailing spacecraft at different times
— Lead spacecraft encounters feature first

e ¢.g.lead spacecraft speeds up towards mountain

— Range to trailing spacecraft increases
— Any unknown non-gravity forces acting on spacecraft also affect range

e Calibrated out using accelerometer or drag-free sensor system
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Ranging Measurement Methods

* Range 1s determined by
round-trip light time

 Pulsed light 1s used in SLR/LLR
where photon rates are low

» Coherent signals allow use of
phase delay for higher accuracy

* Range ambiguity by integer
number of wavelengths can
be resolved with modulation
if required
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Dual-one-way versus Transponding

* GRACE uses independent
transmission/detection at each
spacecraft

— Combination of data on ground
determines range

e Laser ranging will lock laser to
frequency reference on one
spacecraft and lock laser to
received laser on seconds s/c

— Otherwise laser frequencies
would be too far apart

— Fast phase meter needed for
locking function
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Microwave and Laser Ranging Sensitivity
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@/ Optical Cavity Frequency Reference

e Stabilize laser frequency by
locking wavelength to thermally
stable optical cavity

— ULE glass has ultra-low thermal-
expansion coefficient

—Isolate from external temperature
fluctuations




@/ Cavity Mount Design

e Cavity 1s mounted using
flexures bonded to cavity
central ring

— Flexure material (T1) and stiffne
chosen to provide support and
maintain alignment for launch
and minimize thermo-elastic
effects on cavity

e Optics for injecting laser light /[
into cavity via fiber are also
mounted using flexures




@ Thermal Isolation Enclosure

* T'wo concentric shells surround
the cavity and optics to i1solate
them from external thermal

* Size and mass of laser frequency
stabilization subsystem has been
iterated with GRACE spacecraft
team to ensure compatibility

e Inner shell forms a vacuum
enclosure to avoid gas pressure
fluctuations and contamination

— Vacuum gauge and valve included
for development will be replaced

with vent-to-space actuator for
flight




Laser Locking to Optical Cavity

 Laser locked to cavity using Pound-Drever-Hall technique
— Light resonance occurs when cavity length is integer number of wavelengths
» Laser frequency stability is directly related to stability of length of cavity
— Cavity 1s made of material with low thermal expansion coefficient
— Light exiting cavity compared with light entering cavity
— Requires electro-optical modulator to add phase-modulation to laser beam

 Difference in modulation signal gives laser correction to match cavity

ya Photo-
y ™ detector

S % wave plate

Optical cavity

11




Tunable Laser

e Non-planar ring oscillator
(NPRO) Nd:YAG laser provides
tunability for locking to cavity

— Laser wavelength adjusted by
changing dimensions of YAG
crystal using PZT glued to crystal
and thermal adjustment

e Space-qualified NPRO laser
available from Tesat Spacecom

NPRO laser head
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@/ Electro-Optical Modulator

e Several companies make EOM
suitable for use in space

e Selected unit from Photline has
inexpensive laboratory model
traceable to flight model

— Tested to show meets locking
requirements

Selected electro-optical modulator

13




Breadboard Locking Electronics
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Subsystem Performance Results

Prototype flight—packaged vs H—cavity performance
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Environmental Test Results

e Breadboard cavity thermal tests showed a slight misalignment
occurred at highest temperatures

—Traced to adhesive glass transition at S0C

* Prototype cavity assembled 1s improved processes

— Successfully passed thermal and vibration tests

e Cavity assembly 1s at TRL-6

e EOM thermal test passes, vibration test pending
* Electronics prototype still in assembly
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Future Plans

* Prototype electronics are in final assembly

— Performance and environmental tests planned to establish TRL-6

* Functional system-level test planned with inter-spacecraft optics
from I1P-02

e GRACE-FO project started June 2011 with laser ranging included
as technology demonstration
— Will include cavity and electronics developed under I1P-07

 Cavity enclosure needs to be slightly modified to fit allocated volume

— Optical benches, beam steering mirror and routing optics to be provided by
Germany

— Beam steering and initial acquisition are major system-level challenges
remaining
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GRACE Spacecraft
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ONERA
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Racetrack Configuration
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@ Lateral Transfer Hollow Retroreflector™
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